%I #16 Dec 20 2020 12:35:14
%S 1,1,2,34,1576,190216,46479536,21246061600,16505196258944,
%T 20569621110703360,39048520577674054912,108556407221350072075840,
%U 427386074980323385950161920,2317659324414032887611600999424,16904848426143946143993568391307264,162490636486997482412425606460112242944,2021898321663894965658036079204603050491904
%N Sums of the fourth powers of the descent set statistics for permutations on n elements.
%H R. Ehrenborg and A. Happ, <a href="https://arxiv.org/abs/1709.00778">On the powers of the descent set statistic</a>, arXiv:1709.00778 [math.CO], 2017.
%F a(n) = Sum_{j=0..ceiling(2^(n-1))-1} A060351(n,j)^4. - _Alois P. Heinz_, Sep 15 2020
%e For n=4, we have a(4) = 1^4 + 3^4 + 5^4 + 3^4 + 3^4 + 5^4 + 3^4 + 1^4 = 1576.
%Y Cf. A060350, A291902, A291907, A060351.
%Y Column k=4 of A334622.
%K nonn
%O 0,3
%A _Richard Ehrenborg_, Sep 05 2017
%E a(0)=1 prepended by _Alois P. Heinz_, Sep 09 2020