OFFSET
1,1
COMMENTS
When a^7 + b^7 = m, (m^2*a)^7 + (m^2*b)^7 = m^15 is a cube.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.
EXAMPLE
32^3 = 4^7 + 4^7, so 32 is in the sequence.
35723051649^3 = 16641^7 + 33282^7, so 35723051649 is in the sequence.
MATHEMATICA
lst={}; Do[If[IntegerQ[(n^3-a^7)^(1/7)], AppendTo[lst, n]], {n, 1.467*10^11}, {a, (n^3/2)^(1/7)}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
XU Pingya, Sep 03 2017
STATUS
approved