OFFSET
1,3
FORMULA
G.f. A(x) also satisfies:
(1) A(x) = (1/2)*Series_Reversion( x - 2*x*A(x) ) + x/2.
(2) A( 2*A(x) - x ) = (A(x) - x) / (2*A(x) - x).
a(n) = Sum_{k=0..n-1} A291820(n, k) * 2^k.
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 35*x^4 + 297*x^5 + 2873*x^6 + 30657*x^7 + 353727*x^8 + 4355497*x^9 + 56709337*x^10 + 775575269*x^11 + 11085971235*x^12 +...
such that A(x - 2*x*A(x)) = x - x*A(x).
RELATED SERIES.
A(x - 2*x*A(x)) = x - x^2 - x^3 - 5*x^4 - 35*x^5 - 297*x^6 - 2873*x^7 - 30657*x^8 +...
which equals x - x*A(x).
Series_Reversion( x - 2*x*A(x) ) = x + 2*x^2 + 10*x^3 + 70*x^4 + 594*x^5 + 5746*x^6 + 61314*x^7 + 707454*x^8 + 8710994*x^9 + 113418674*x^10 +...
which equals 2*A(x) - x.
A( 2*A(x) - x ) = x + 3*x^2 + 19*x^3 + 159*x^4 + 1561*x^5 + 17087*x^6 + 202975*x^7 + 2574391*x^8 + 34495545*x^9 + 484770627*x^10 + 7107406323*x^11 + 108289787415*x^12 + 1709478736593*x^13 + 27894511442079*x^14 +...
which equals (A(x) - x) / (2*A(x) - x).
PROG
(PARI) {a(n) = my(A=x); for(i=1, n, A = (1/2)*serreverse( x - 2*x*A +x*O(x^n) ) + x/2 ); polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 01 2017
STATUS
approved