The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291772 Number of minimal dominating sets in the 2n-crossed prism graph. 3
 4, 12, 61, 316, 1304, 5223, 21557, 90404, 377863, 1572942, 6545785, 27262279, 113572619, 473082153, 1970443556, 8207168564, 34184621296, 142386794787, 593071821262, 2470268797246, 10289192009129, 42856677944829, 178507203892808, 743520516941183 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 Eric Weisstein's World of Mathematics, Crossed Prism Graph Eric Weisstein's World of Mathematics, Minimal Dominating Set Index entries for linear recurrences with constant coefficients, signature (4, -2, 7, 17, 2). FORMULA From Andrew Howroyd, Aug 31 2017: (Start) a(n) = 4*a(n-1) - 2*a(n-2) + 7*a(n-3) + 17*a(n-4) + 2*a(n-5) for n > 5. G.f.: x*(4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5). (End) MATHEMATICA Rest@ CoefficientList[Series[x (4 - 4 x + 21 x^2 + 68 x^3 + 10 x^4)/(1 - 4 x + 2 x^2 - 7 x^3 - 17 x^4 - 2 x^5), {x, 0, 24}], x] (* Michael De Vlieger, Aug 31 2017 *) LinearRecurrence[{4, -2, 7, 17, 2}, {4, 12, 61, 316, 1304}, 30] (* Harvey P. Dale, Jul 02 2019 *) PROG (PARI) Vec((4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5)+O(x^30)) \\ Andrew Howroyd, Aug 31 2017 CROSSREFS Cf. A287062, A290708. Sequence in context: A088860 A097250 A188328 * A222645 A259816 A071769 Adjacent sequences:  A291769 A291770 A291771 * A291773 A291774 A291775 KEYWORD nonn AUTHOR Eric W. Weisstein, Aug 31 2017 EXTENSIONS a(1) and terms a(7) and beyond from Andrew Howroyd, Aug 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 04:15 EDT 2020. Contains 333155 sequences. (Running on oeis4.)