login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291772 Number of minimal dominating sets in the 2n-crossed prism graph. 3
4, 12, 61, 316, 1304, 5223, 21557, 90404, 377863, 1572942, 6545785, 27262279, 113572619, 473082153, 1970443556, 8207168564, 34184621296, 142386794787, 593071821262, 2470268797246, 10289192009129, 42856677944829, 178507203892808, 743520516941183 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

Eric Weisstein's World of Mathematics, Crossed Prism Graph

Eric Weisstein's World of Mathematics, Minimal Dominating Set

Index entries for linear recurrences with constant coefficients, signature (4, -2, 7, 17, 2).

FORMULA

From Andrew Howroyd, Aug 31 2017: (Start)

a(n) = 4*a(n-1) - 2*a(n-2) + 7*a(n-3) + 17*a(n-4) + 2*a(n-5) for n > 5.

G.f.: x*(4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5).

(End)

MATHEMATICA

Rest@ CoefficientList[Series[x (4 - 4 x + 21 x^2 + 68 x^3 + 10 x^4)/(1 - 4 x + 2 x^2 - 7 x^3 - 17 x^4 - 2 x^5), {x, 0, 24}], x] (* Michael De Vlieger, Aug 31 2017 *)

LinearRecurrence[{4, -2, 7, 17, 2}, {4, 12, 61, 316, 1304}, 30] (* Harvey P. Dale, Jul 02 2019 *)

PROG

(PARI) Vec((4 - 4*x + 21*x^2 + 68*x^3 + 10*x^4)/(1 - 4*x + 2*x^2 - 7*x^3 - 17*x^4 - 2*x^5)+O(x^30)) \\ Andrew Howroyd, Aug 31 2017

CROSSREFS

Cf. A287062, A290708.

Sequence in context: A088860 A097250 A188328 * A222645 A259816 A071769

Adjacent sequences:  A291769 A291770 A291771 * A291773 A291774 A291775

KEYWORD

nonn

AUTHOR

Eric W. Weisstein, Aug 31 2017

EXTENSIONS

a(1) and terms a(7) and beyond from Andrew Howroyd, Aug 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 04:15 EDT 2020. Contains 333155 sequences. (Running on oeis4.)