The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291699 a(n) = n^n*(2*n)!/(n!*(n + 1)!). 4
 1, 1, 8, 135, 3584, 131250, 6158592, 353299947, 23991418880, 1883638417518, 167960000000000, 16772331868538246, 1854655886442627072, 225005916687384753700, 29718395534545380311040, 4245313393689422607421875, 652233889532678001886494720, 107247390031799133661006687830 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..322 FORMULA a(n) = [x^n] 2/(1 + sqrt(1 - 4*n*x)). a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - ...)))))), a continued fraction. a(n) = n! * [x^n] (BesselI(0,2*n*x) - BesselI(1,2*n*x))*exp(2*n*x). a(n) = n^n*binomial(2*n,n)/(n + 1). a(n) = A000312(n)*A000108(n). a(n) = A290605(n,n). a(n) ~ 4^n*n^(n-3/2)/sqrt(Pi). MAPLE seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # Robert Israel, Aug 30 2017 MATHEMATICA Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]] Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}] Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}] CROSSREFS Main diagonal of A290605. Cf. A000108, A000312, A001761, A061711. Sequence in context: A215553 A069988 A229237 * A292914 A072072 A195614 Adjacent sequences: A291696 A291697 A291698 * A291700 A291701 A291702 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 13:46 EST 2022. Contains 358700 sequences. (Running on oeis4.)