%I #26 Apr 22 2024 06:15:28
%S 294409,1299963601,4215885697,4562359201,7629221377,13079177569,
%T 19742849041,45983665729,65700513721,147523256371,168003672409,
%U 227959335001,459814831561,582561482161,1042789205881,1297472175451,1544001719761,2718557844481,3253891093249,4116931056001,4226818060921,4406163138721,4764162536641,4790779641001,5419967134849,7298963852041,8470346587201
%N Carmichael numbers (A002997) that are super-Poulet numbers (A050217).
%C Problem: are there infinitely many such numbers?
%C From _Daniel Suteu_, Sep 17 2020: (Start)
%C If we consider f(n) to be the smallest number in the sequence with n prime factors, then we have:
%C f(3) = 294409,
%C f(4) = 3018694485093841,
%C f(5) <= 521635331852681575100906881,
%C f(6) <= 2835402730651853232634509813787097410561,
%C f(7) <= 165784025660216242122027716057592895796242004385542265601. (End)
%H Amiram Eldar, <a href="/A291637/b291637.txt">Table of n, a(n) for n = 1..5328</a> (calculated using data from Claude Goutier; terms 1..983 from Max Alekseyev)
%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.
%Y Intersection of A178997 and A002997.
%K nonn
%O 1,1
%A _Max Alekseyev_ and _Thomas Ordowski_, Aug 28 2017