This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291582 Maximum number of 6 sphinx tile shapes in a sphinx tiled hexagon of order n. 4

%I

%S 30,132,306,552,870,1260,1722,2256,2862,3540,4290,5112,6006,6972,8010,

%T 9120,10302,11556,12882,14280,15750,17292,18906,20592,22350,24180,

%U 26082,28056,30102,32220,34410,36672,39006,41412,43890,46440,49062,51756,54522,57360,60270,63252

%N Maximum number of 6 sphinx tile shapes in a sphinx tiled hexagon of order n.

%C The equilateral triangle composed of 144 smaller equilateral triangles is the smallest triangle that can be tiled with the sphinx. This triangle is used to form all orders of the hexagon.

%C Walter Trump enumerated all 830 sphinx tilings of this triangle and found six symmetrical examples one of which is used to produce this sequence.

%C Hyper-packing is a term that describes the ability of a shape to contain a greater area of subshapes than its own area by overlapping the subshapes. There are 864 unit triangles in the order 1 hexagon. 30 of the subshapes hyper-packed into this hexagon would contain 30x6x6 or 1080 unit triangles if summed individually.

%C The prime numbers cannot be described by a formula. Subsets of the primes such as the balanced primes are more formula friendly (see comments to puzzle 920 below). - _Craig Knecht_, Apr 19 2018

%H G. C. Greubel, <a href="/A291582/b291582.txt">Table of n, a(n) for n = 1..5000</a>

%H Craig Knecht, <a href="/A291582/a291582_1.png">Example for the sequence.</a>

%H Craig Knecht, <a href="/A291582/a291582_2.png">Order 4 Hexagon with 246 subshapes.</a>

%H Craig Knecht, <a href="/A291582/a291582.png">Sphinx tiling of the triangle used to make the hexagon.</a>

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_920.htm">Puzzle 920. An enigma related to A291582</a>, Primes puzzles and problems connections.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/File:Sphinx_Tile_Patterns.png">Eight sphinx tile tessellation of the same hexagon</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/File:Hyper-packing_the_sphinx.png">Hyper-Packing the Sphinx</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/File:Sphinx_tile_triangle.png">Symmetric sphinx tiled triangles</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Walter_Trump">Walter Trump</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 6*n*(6*n-1). - Walter Trump

%F G.f.: 2*x*(15+21*x)/(1-x)^3. - _Vincenzo Librandi_, Sep 20 2017

%F a(n) = 6*A049452(n) = 6*n*A016969(n-1). - _Torlach Rush_, Nov 28 2018

%F E.g.f.: 6*exp(x)*(5 + 17*x + 6*x^2). - _Stefano Spezia_, Dec 07 2018

%p seq(6*n*(6*n-1),n=1..100); # _Robert Israel_, Sep 19 2017

%t Array[6 # (6 # - 1) &, 42] (* _Michael De Vlieger_, Sep 19 2017 *)

%t CoefficientList[Series[2(15 + 21 x)/(1-x)^3,{x, 0, 50}], x] (* _Vincenzo Librandi_, Sep 20 2017 *)

%t CoefficientList[Series[6 E^x (5 + 17 x + 6 x^2), {x, 0, 50}], x]*

%t Table[n!, {n, 0, 50}] (* _Stefano Spezia_, Dec 07 2018 *)

%o (MAGMA) [6*n*(6*n-1): n in [1..50]]; // _Vincenzo Librandi_, Sep 20 2017

%o (PARI) a(n) = 6*n*(6*n-1); \\ _Altug Alkan_, Apr 08 2018

%o (Sage) [6*n*(6*n-1) for n in (1..50)] # _G. C. Greubel_, Dec 04 2018

%o (GAP) List([1..30], n -> 6*n*(6*n-1)); # _G. C. Greubel_, Dec 04 2018

%Y Cf. A016969, A049452.

%Y Cf. A279887, A287999.

%K nonn,easy,changed

%O 1,1

%A _Craig Knecht_, Aug 30 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:41 EST 2018. Contains 318023 sequences. (Running on oeis4.)