login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291539 a(n) = PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), where PrimePi = A000720. 6
0, 2, 1, 6, 3, 14, 8, 25, 41, 68, 67, 99, 93, 136, 188, 240, 229, 303, 306, 383, 467, 562, 566, 688, 795, 922, 1066, 1227, 1247, 1421, 1446, 1620, 1826, 2036, 2283, 2511, 2566, 2843, 3115, 3401, 3431, 3746, 3827, 4163, 4526, 4895, 4981, 5369, 5743, 6229, 6712, 7165, 7202, 7743, 8258, 8835, 9453, 9999, 10132, 10736 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

All terms are positive except a(1) = 0, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n^3) > PrimePi(n) * PrimePi(n)^2 for n > 1.

For PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, see A291540.

For PrimePi(n^3) - PrimePi(n)^3, see A291538.

For prime(n) * prime(n^2) - prime(n^3), see A291541.

LINKS

Table of n, a(n) for n=1..60.

FORMULA

a(n) = A000720(n^3) - A000720(n) * A000720(n)^2.

a(n) = A291538(n) - A291540(n).

a(n) ~ (n^3 / log(n))*(1/3  - 1/(2*log(n)^2)) as n tends to infinity.

EXAMPLE

a(2) = PrimePi(2^3) - PrimePi(2) * PrimePi(2^2) = 4 - 1 * 2 = 2.

MATHEMATICA

Table[ PrimePi[n^3] - PrimePi[n]*PrimePi[n^2], {n, 60}]

PROG

(PARI) a(n) = primepi(n^3) - primepi(n) * primepi(n^2); \\ Michel Marcus, Sep 10 2017

CROSSREFS

Cf. A000720, A123914, A262199, A291440, A291538, A291540, A291541, A291542.

Sequence in context: A086111 A262603 A131174 * A135994 A217646 A133166

Adjacent sequences:  A291536 A291537 A291538 * A291540 A291541 A291542

KEYWORD

nonn

AUTHOR

Jonathan Sondow, Aug 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 14:55 EDT 2020. Contains 337383 sequences. (Running on oeis4.)