The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291539 a(n) = PrimePi(n^3) - PrimePi(n) * PrimePi(n^2), where PrimePi = A000720. 6
 0, 2, 1, 6, 3, 14, 8, 25, 41, 68, 67, 99, 93, 136, 188, 240, 229, 303, 306, 383, 467, 562, 566, 688, 795, 922, 1066, 1227, 1247, 1421, 1446, 1620, 1826, 2036, 2283, 2511, 2566, 2843, 3115, 3401, 3431, 3746, 3827, 4163, 4526, 4895, 4981, 5369, 5743, 6229, 6712, 7165, 7202, 7743, 8258, 8835, 9453, 9999, 10132, 10736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS All terms are positive except a(1) = 0, by the PNT with error term for large n and computation for smaller n. In particular, PrimePi(n^3) > PrimePi(n) * PrimePi(n)^2 for n > 1. For PrimePi(n) * PrimePi(n^2) - PrimePi(n)^3, see A291540. For PrimePi(n^3) - PrimePi(n)^3, see A291538. For prime(n) * prime(n^2) - prime(n^3), see A291541. LINKS FORMULA a(n) = A000720(n^3) - A000720(n) * A000720(n)^2. a(n) = A291538(n) - A291540(n). a(n) ~ (n^3 / log(n))*(1/3  - 1/(2*log(n)^2)) as n tends to infinity. EXAMPLE a(2) = PrimePi(2^3) - PrimePi(2) * PrimePi(2^2) = 4 - 1 * 2 = 2. MATHEMATICA Table[ PrimePi[n^3] - PrimePi[n]*PrimePi[n^2], {n, 60}] PROG (PARI) a(n) = primepi(n^3) - primepi(n) * primepi(n^2); \\ Michel Marcus, Sep 10 2017 CROSSREFS Cf. A000720, A123914, A262199, A291440, A291538, A291540, A291541, A291542. Sequence in context: A086111 A262603 A131174 * A135994 A217646 A133166 Adjacent sequences:  A291536 A291537 A291538 * A291540 A291541 A291542 KEYWORD nonn AUTHOR Jonathan Sondow, Aug 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 14:55 EDT 2020. Contains 337383 sequences. (Running on oeis4.)