The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291484 Expansion of e.g.f. arctanh(x)*exp(x). 2
 0, 1, 2, 5, 12, 49, 190, 1301, 7224, 69441, 495898, 6095429, 53005700, 792143793, 8110146070, 142633278997, 1679413757168, 33964965659649, 451969255722162, 10331348137881349, 153288815339260796, 3907452790559751857, 63949589015139119598, 1798373345567005989781, 32179694275204166066728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: log((1 + x)/(1 - x))*exp(x)/2. From Emanuele Munarini, Dec 16 2017: (Start) a(n) = Sum_{k=0..n/2} binomial(n+1,2*k+1)*((n-2*k)/(n+1))*(2*k)!. a(n+3) - a(n+2) - (n+1)*(n+2)*a(n+1) + (n+1)*(n+2)*a(n) = 1. a(n+4) - 2*a(n+3) - (n^2+5*n+5)*a(n+2) + 2*(n+2)^2*a(n+1) - (n+1)*(n+2)*a(n) = 0. (End) a(n) ~ (n-1)! * (exp(1) - (-1)^n * exp(-1))/2. - Vaclav Kotesovec, Dec 16 2017 EXAMPLE E.g.f.: A(x) = x/1! + 2*x^2/2! + 5*x^3/3! + 12*x^4/4! + 49*x^5/5! + ... MAPLE a:=series(arctanh(x)*exp(x), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 27 2019 MATHEMATICA nmax = 24; Range[0, nmax]! CoefficientList[Series[ArcTanh[x] Exp[x], {x, 0, nmax}], x] nmax = 24; Range[0, nmax]! CoefficientList[Series[Log[(1 + x)/(1 - x)] Exp[x]/2, {x, 0, nmax}], x] nmax = 24; Range[0, nmax]! CoefficientList[Series[Sum[x^(2 k + 1)/(2 k + 1), {k, 0, Infinity}] Exp[x], {x, 0, nmax}], x] Table[Sum[Binomial[n+1, 2k+1](n-2k)/(n+1) (2 k)!, {k, 0, n/2}], {n, 0, 12}] (* Emanuele Munarini, Dec 16 2017 *) PROG (Maxima) makelist(sum(binomial(n+1, 2*k+1)*(n-2*k)/(n+1)*(2*k)!, k, 0, floor(n/2)), n, 0, 12); /* Emanuele Munarini, Dec 16 2017 */ (PARI) first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)*exp(x)), -n) \\ Iain Fox, Dec 16 2017 CROSSREFS Cf. A002104, A002741, A009739, A009832, A010050, A012709, A087208 (first differences), A279927. Sequence in context: A334811 A071787 A332791 * A145997 A067578 A109139 Adjacent sequences:  A291481 A291482 A291483 * A291485 A291486 A291487 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 24 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 10:52 EDT 2021. Contains 342886 sequences. (Running on oeis4.)