login
Expansion of the series reversion of -1 + 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...))))))), a continued fraction.
0

%I #7 May 07 2024 08:55:52

%S 1,-2,4,-9,24,-74,251,-902,3359,-12802,49588,-194445,770099,-3076129,

%T 12380317,-50162386,204475572,-838014584,3451174777,-14274905490,

%U 59276495017,-247019567936,1032709501505,-4330122550717,18204993223606,-76728300335664,324125242867935,-1372110743864550

%N Expansion of the series reversion of -1 + 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...))))))), a continued fraction.

%C Reversion of g.f. for A006958.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a>

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F G.f. A(x) satisfies: -1 + 1/(1 - A(x)/(1 - A(x)/(1 - A(x)^2/(1 - A(x)^2/(1 - A(x)^3/(1 - A(x)^3/(1 - ...))))))) = x.

%F a(n) ~ (-1)^(n+1) * c * d^n / n^(3/2), where d = 4.473956977950366804747779231113352537187229544... and c = 0.1202474525564857621186593278823505223773725... - _Vaclav Kotesovec_, May 07 2024

%t Rest[CoefficientList[InverseSeries[Series[-1 + 1/(1 + ContinuedFractionK[-x^Floor[(i + 1)/2], 1, {i, 1, nmax}]), {x, 0, 28}], x], x]]

%Y Cf. A006958.

%K sign

%O 1,2

%A _Ilya Gutkovskiy_, Aug 23 2017