%I #18 Aug 26 2017 16:39:02
%S 1,12,198,3780,78489,1721412,39234780,920140884,22059787860,
%T 538209747504,13319611953102,333555996632508,8436806028184590,
%U 215223666947011800,5530993034609017080,143057705860198877940,3721183384198820225004,97282669559237767849104
%N Expansion of G(x)^4 where G(x) = g.f. for A291096.
%H Alois P. Heinz, <a href="/A291285/b291285.txt">Table of n, a(n) for n = 0..690</a>
%H Valentin Bonzom, Luca Lionni, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p36">Counting Gluings of Octahedra</a>, Electronic Journal of Combinatorics 24(3) (2017), #P3.36. See Eq. (47).
%F a(n) ~ 2^(8*n+17/2) / (sqrt(Pi) * n^(3/2) * 3^(2*n+9/2)). - _Vaclav Kotesovec_, Aug 26 2017
%p a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*8*
%p (4*n+1)*(2*n+1)*(4*n+3)/((3*n+2)*(3*n+4)*(n+1)))
%p end:
%p seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 26 2017
%Y Cf. A291096.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Aug 26 2017
%E More terms from _Alois P. Heinz_, Aug 26 2017