The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291238 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^2 (1 - 2 S). 2
 4, 11, 30, 79, 202, 508, 1262, 3109, 7614, 18569, 45152, 109560, 265448, 642463, 1553790, 3755843, 9075302, 21923060, 52949458, 127869209, 308767326, 745537309, 1800065788, 4346043888, 10492781068, 25332654899, 61159842270, 147655261111, 356475233986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).  Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291219 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4, -2, -6, 2, 4, 1) FORMULA G.f.: (-4 + 5 x + 6 x^2 - 5 x^3 - 4 x^4)/((-1 + x + x^2)^2 (-1 + 2 x + x^2)). a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 2*a(n-4) + 4*a(n-5) + a(n-6) for n >= 7. MATHEMATICA z = 60; s = x/(1 - x^2); p = (1 - s)^2(1 - 2s); Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291238 *) CROSSREFS Cf. A000035, A291219. Sequence in context: A269083 A026583 A339739 * A110034 A340824 A114726 Adjacent sequences:  A291235 A291236 A291237 * A291239 A291240 A291241 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 28 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 13:00 EDT 2021. Contains 343114 sequences. (Running on oeis4.)