login
A291223
p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^3 - S^4.
2
0, 0, 1, 1, 3, 5, 8, 17, 25, 52, 83, 159, 271, 497, 868, 1572, 2762, 4984, 8784, 15799, 27939, 50089, 88831, 158880, 282293, 504179, 896780, 1600335, 2848339, 5080363, 9045953, 16129172, 28726972, 51209648, 91223508, 162594868, 289675121, 516264093
OFFSET
0,5
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291219 for a guide to related sequences.
LINKS
FORMULA
a(n) = 4*a(n-2) + a(n-3) - 5*a(n-4) - a(n-5) + 4*a(n-6) - a(n-8) for n >= 9.
G.f.: x^2*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 5*x^4 + x^5 - 4*x^6 + x^8). - Colin Barker, Aug 25 2017
MATHEMATICA
z = 60; s = x/(1 - x^2); p = 1 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291223 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + x - x^2) / (1 - 4*x^2 - x^3 + 5*x^4 + x^5 - 4*x^6 + x^8) + O(x^50))) \\ Colin Barker, Aug 25 2017
CROSSREFS
Sequence in context: A080006 A374680 A174011 * A240532 A184434 A196140
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 24 2017
STATUS
approved