login
A291180
Numbers of the form 4*k + 1 with k >= 1 that are not divisible by any prime factor of the form 4*m + 1, except themselves.
1
5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 81, 89, 93, 97, 101, 109, 113, 121, 129, 133, 137, 141, 149, 157, 161, 173, 177, 181, 189, 193, 197, 201, 209, 213, 217, 229, 233, 237, 241, 249, 253, 257, 269, 277, 281, 293, 297, 301, 309, 313, 317
OFFSET
1,1
COMMENTS
Another version of A057948.
LINKS
EXAMPLE
From Michael De Vlieger, Aug 19 2017: (Start)
5 is in the sequence because it is prime.
9 is in the sequence because the only distinct prime divisor 3 is 3 (mod 4).
25 and 45 are not in the sequence because they are divisible by 5 = 1 (mod 4).
(End)
MAPLE
filter:= n -> isprime(n) or andmap(t -> t mod 4 <> 1, numtheory:-factorset(n)):
select(filter, [seq(i, i=5..1000, 4)]); # Robert Israel, Aug 21 2017
MATHEMATICA
Select[4 Range[80] + 1, Function[n, If[CompositeQ@ n, NoneTrue[ Select[ FactorInteger[n][[All, 1]], Mod[#, 4] == 1 &], Divisible[n, #] &], True]]] (* Michael De Vlieger, Aug 19 2017 *)
PROG
(Magma) lst:=[]; for n in [5..317 by 4] do if IsPrime(n) then Append(~lst, n); else f:=Factorization(n); if IsZero([x: x in [1..#f] | f[x][1] mod 4 eq 1]) then Append(~lst, n); end if; end if; end for; lst;
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved