%I #34 Aug 12 2022 09:17:59
%S 1,1,1,1,1,1,3,2,1,1,7,8,4,1,1,15,30,20,7,1,1,31,104,102,46,11,1,1,63,
%T 342,496,300,96,16,1,1,127,1088,2294,1891,786,183,22,1,1,255,3390,
%U 10200,11417,6167,1862,323,29,1,1,511,10424,44062,66256,46417,17801,4040,535,37,1,1,1023,31782,186416,372190,336022,162372,46425,8127,841,46,1
%N Triangle read by rows: T(n,k) = number of ways of partitioning the (n+2)-element multiset {1,1,1,2,3,...,n} into exactly k nonempty parts, n >= 0 and 1 <= k <= n + 2.
%H M. Griffiths and I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5.
%H Marko Riedel, <a href="https://math.stackexchange.com/questions/2386814/">Partitions into bounded blocks</a>, Mathematics Stack Exchange.
%H Marko Riedel, <a href="/A291117/a291117_2.maple.txt">Maple code for sequences A241500, A291117, A291118, A291119, A291120.</a>
%F Formula including proof is at web link.
%e Triangle begins:
%e 1, 1;
%e 1, 1, 1;
%e 1, 3, 2, 1;
%e 1, 7, 8, 4, 1;
%e 1, 15, 30, 20, 7, 1;
%e 1, 31, 104, 102, 46, 11, 1;
%e 1, 63, 342, 496, 300, 96, 16, 1;
%Y Cf. A241500, A291118, A291119, A291120.
%Y Columns k=1..4: A000012, A255047, A168605, A168606.
%K nonn,tabf
%O 0,7
%A _Marko Riedel_, Aug 17 2017