login
A291055
Number of maximal irredundant sets in the n-path graph.
4
1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184, 269, 395, 582, 849, 1255, 1843, 2708, 3982, 5841, 8597, 12631, 18566, 27286, 40082, 58929, 86598, 127279, 187052, 274872, 404001, 593732, 872606, 1282416, 1884660, 2769856, 4070718, 5982611, 8792345
OFFSET
1,2
COMMENTS
From Andrew Howroyd, Aug 23 2017: (Start)
The minimum size of a maximal irredundant set, the irredundance number, is given by ceiling(n/3). A suitable construction for such a set is every third vertex starting with the second if n is a multiple of 3, otherwise starting with the first.
The maximum size of an irredundant set, the upper irredundance number, is given by ceiling(n/2). A suitable construction for such a set is every second vertex starting with the first.
(End)
LINKS
Eric Weisstein's World of Mathematics, Path Graph
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1).
FORMULA
From Andrew Howroyd, Aug 23 2017: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) + a(n-5) - a(n-7) - 2*a(n-8) - a(n-9) + 2*a(n-10) + a(n-11) - a(n-14) for n > 14.
G.f.: x*(1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14).
(End)
EXAMPLE
Case n=5: maximal irredundant sets represented as binary words are {00110, 01001, 01010, 01100, 10010, 10101}, so a(5)=6. - Andrew Howroyd, Aug 23 2017
MATHEMATICA
Rest @ CoefficientList[Series[x (1 + 2 x + x^2 + x^3 + x^4 - x^5 - x^6 - 2 x^7 + 3 x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, 42}], x] (* Michael De Vlieger, Aug 24 2017 *)
LinearRecurrence[{0, 1, 1, 1, 1, 0, -1, -2, -1, 2, 1, 0, 0, -1}, {1, 2, 2, 4, 6, 8, 13, 17, 27, 40, 57, 86, 122, 184}, 20] (* Eric W. Weisstein, Aug 28 2017 *)
RootSum[1 - #^3 - 2 #^4 + #^5 + 2 #^6 + #^7 - #^9 - #^10 - #^11 - #^12 + #^14 &, -4480566127993567 #^n + 2115784835595702 #^(n+1) - 8803686900182082 #^(n+2) + 12438105918248674 #^(n+3) + 9975829435558087 #^(n+4) + 32647411155695559 #^(n+5) + 921201586573742 #^(n+6) - 12400355965941932 #^(n+7) - 18709447182799197 #^(n+8) - 16194871035876814 #^(n+9) - 8478829128434826 #^(n+10) - 3824486277258301 #^(n+11) + 902031297001609 #^(n+12) + 11119370357865554 #^(n+13) &]/333325507942333403 (* Eric W. Weisstein, Aug 28 2017 *)
PROG
(PARI) Vec((1 + 2*x + x^2 + x^3 + x^4 - x^5 - x^6 - 2*x^7 + 3*x^9 - x^12 - x^13)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14)+O(x^40)) \\ Andrew Howroyd, Aug 23 2017
CROSSREFS
Row 1 of A291439.
Row sums of A291375.
Sequence in context: A274152 A274155 A145465 * A266949 A255710 A329137
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 17 2017
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 23 2017
STATUS
approved