login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290987 Expansion of (1 - 2*x + x^2 - x^4 + x^3 + x^5)/((1 - x)^2*(1 - 2*x + x^3 - x^4)). 1
1, 2, 4, 8, 16, 32, 63, 122, 233, 441, 830, 1557, 2915, 5451, 10186, 19026, 35529, 66337, 123849, 231211, 431631, 805768, 1504193, 2807986, 5241856, 9785309, 18266848, 34099850, 63656272, 118831031, 221829087, 414101780, 773028830, 1443059634, 2693846606 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Robert Israel, Table of n, a(n) for n = 0..3684

T. Langley, J. Liese, J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2, A(123;1,x).

Index entries for linear recurrences with constant coefficients, signature (4,-5,1,3,-3,1).

FORMULA

a(n) = A059633(n+2)+A059633(n+3)-n.

MAPLE

f:= gfun:-rectoproc({a(n)-3*a(n+1)+3*a(n+2)+a(n+3)-5*a(n+4)+4*a(n+5)-a(n+6), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16, a(5) = 32}, a(n), remember):

map(f, [$0..50]); # Robert Israel, Aug 16 2017

MATHEMATICA

DeleteCases[#, 0] &@ CoefficientList[Series[(1 - 2 x + x^2 - x^4 + x^3 + x^5)/((1 - x)^2*(1 - 2 x + x^3 - x^4)), {x, 0, 34}], x] (* Michael De Vlieger, Aug 16 2017 *)

LinearRecurrence[{4, -5, 1, 3, -3, 1}, {1, 2, 4, 8, 16, 32}, 40] (* Vincenzo Librandi, Aug 17 2017 *)

PROG

(MAGMA) I:=[1, 2, 4, 8, 16, 32]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+Self(n-3)+3*Self(n-4)-3*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 17 2017

(PARI) Vec((1-2*x+x^2-x^4+x^3+x^5)/((1-x)^2*(1-2*x+x^3-x^4)) + O(x^50)) \\ Michel Marcus, Aug 17 2017

CROSSREFS

Sequence in context: A052396 A051040 A006261 * A145112 A062259 A001949

Adjacent sequences:  A290984 A290985 A290986 * A290988 A290989 A290990

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Aug 16 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 05:52 EST 2019. Contains 329051 sequences. (Running on oeis4.)