The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290973 Write 2*x/(1-x) in the form Sum_{j>=1} ((1-x^j)^a(j) - 1). 5
 -2, 1, 2, 3, 4, 6, 6, 10, 8, 15, 10, 25, 12, 28, 10, 60, 16, 25, 18, 125, 0, 66, 22, 218, 24, 91, -30, 420, 28, -387, 30, 2011, -88, 153, 28, -1894, 36, 190, -182, 8902, 40, -3234, 42, 2398, -132, 276, 46, 2340, 48, -2678, -510, 4641, 52, -1754, -198, 108400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS FORMULA For all n > 0 we have: 2 = Sum_{d|n} binomial(-a(d) + n/d - 1, n/d). EXAMPLE 2x/(1-x) = (1-x)^(-2) - 1 + (1-x^2)^1 - 1 + (1-x^3)^2 - 1 + (1-x^4)^3 - 1 + ... MAPLE a:= n-> add(binomial(n/d-1-a(d), n/d), d=         numtheory[divisors](n) minus {n})-2: seq(a(n), n=1..60);  # Alois P. Heinz, Aug 27 2017 MATHEMATICA nn=60; rus=SolveAlways[Normal[Series[2x/(1-x)==Sum[(1-x^n)^a[n]-1, {n, nn}], {x, 0, nn}]], x]; Array[a, nn]/.First[rus] CROSSREFS Cf. A048272, A220418, A260685, A281145, A289078, A289501, A290261, A290971. Sequence in context: A050040 A277282 A191973 * A173497 A022875 A325841 Adjacent sequences:  A290970 A290971 A290972 * A290974 A290975 A290976 KEYWORD sign AUTHOR Gus Wiseman, Aug 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 20:02 EDT 2020. Contains 337265 sequences. (Running on oeis4.)