login
A290880
E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where S(x) is the e.g.f. of A290881.
5
1, 1, -7, 265, -24175, 4037425, -1070526775, 412826556025, -218150106913375, 151297155973926625, -133288452772763494375, 145378048431548466795625, -192296944484564858674279375, 303266384253858232005535140625, -562167814015907092875287424484375, 1210147640238238850996978598797265625, -2993757681527630470101347134338702109375
OFFSET
0,3
LINKS
FORMULA
E.g.f.: C(x) = cosh( Series_Reversion( Integral sqrt( cosh(2*x) ) dx ) ).
Let S(x) be the e.g.f. of A290881, then:
(1) C'(x) = S(x) / sqrt(C(x)^2 + S(x)^2).
(2) S'(x) = C(x) / sqrt(C(x)^2 + S(x)^2).
such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
EXAMPLE
E.g.f.: C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
such that C(x)^2 - S(x)^2 = 1 where S(x) begins:
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=1, n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(C=1); C = cosh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 13 2017
STATUS
approved