This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290808 Number of partitions of n into distinct Pell parts (A000129). 2
 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS All terms are 0 or 1. - Robert Israel, Aug 16 2017 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Eric Weisstein's World of Mathematics, Pell Number FORMULA G.f.: Product_{k>=1} (1 + x^A000129(k)). EXAMPLE a(8) = 1 because we have [5, 2, 1]. MAPLE N:= 200: # to get a(0) to a(N) Pell:= gfun:-rectoproc({a(0)=0, a(1)=1, a(n+1)=2*a(n)+a(n-1)}, a(n), remember): G:= 1: for k from 1 while Pell(k) <= N do G:= G*(1+x^Pell(k)) od: seq(coeff(G, x, n), n=0..N); # Robert Israel, Aug 16 2017 MATHEMATICA CoefficientList[Series[Product[(1 + x^Fibonacci[k, 2]), {k, 1, 15}], {x, 0, 108}], x] CROSSREFS Cf. A000119, A000121, A000129, A003263, A290807. Sequence in context: A328308 A257196 A176137 * A190239 A120529 A292301 Adjacent sequences:  A290805 A290806 A290807 * A290809 A290810 A290811 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 09:24 EDT 2019. Contains 328345 sequences. (Running on oeis4.)