login
A290771
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the continued fraction 1/(1 - x/(1 - x^(2^k)/(1 - x^(3^k)/(1 - x^(4^k)/(1 - x^(5^k)/(1 - ...)))))).
3
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 14, 1, 1, 1, 1, 3, 42, 1, 1, 1, 1, 1, 5, 132, 1, 1, 1, 1, 1, 2, 9, 429, 1, 1, 1, 1, 1, 1, 3, 15, 1430, 1, 1, 1, 1, 1, 1, 1, 4, 26, 4862, 1, 1, 1, 1, 1, 1, 1, 1, 5, 45, 16796, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 78, 58786, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 135, 208012
OFFSET
0,6
FORMULA
G.f. of column k: 1/(1 - x/(1 - x^(2^k)/(1 - x^(3^k)/(1 - x^(4^k)/(1 - x^(5^k)/(1 - ...)))))), a continued fraction.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, ...
5, 2, 1, 1, 1, 1, ...
14, 3, 1, 1, 1, 1, ...
42, 5, 2, 1, 1, 1, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-x^(i^k), 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
CROSSREFS
Columns k = 0..5 give A000108, A005169, A206739, A291146, A291149, A291168.
Sequence in context: A216645 A216635 A213945 * A014651 A275422 A169951
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Aug 10 2017
STATUS
approved