login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290748 Let F denote the two-way infinite sequence of Fibonacci numbers (for all positive or negative integers k, F(k+2)=F(k)+F(k+1) with F(0)=0, F(1)=1). Sequence lists positive numbers that are the difference between two terms of F. 2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 29, 31, 32, 33, 34, 35, 37, 42, 47, 50, 52, 53, 54, 55, 56, 57, 58, 60, 63, 68, 76, 81, 84, 86, 87, 88, 89, 90, 92, 97, 110, 123, 131, 136, 139, 141, 142, 143, 144, 145, 146 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Don Reble, Difference of Fibonacci's, Posting to Sequence Fans Mailing List, Aug 10 2017.

EXAMPLE

9 is here because F(6) - F(-2) = 8 - (-1) = 9.

MAPLE

N:= 40: # to get all terms <= F(N) - F(N-1)

P:= sort(convert({seq(combinat:-fibonacci(n), n=-N..N)}, list)):

sort(convert(select(`<=`, {seq(seq(P[i]-P[j], j=1..i-1), i=1..nops(P))}, P[-1]-P[-2]), list)): # Robert Israel, Aug 11 2017

MATHEMATICA

Select[Union[Subtract @@@ Tuples[Fibonacci[Range[-30, 30]], 2]], 0 < # < 150 &] (* Giovanni Resta, Aug 11 2017 *)

CROSSREFS

Cf. A000045, A007298 (if we only use F(k) for k >= 0).

See A290749 for the complement.

Sequence in context: A179892 A061773 A125007 * A035062 A032964 A033066

Adjacent sequences:  A290745 A290746 A290747 * A290749 A290750 A290751

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 11 2017

EXTENSIONS

Corrected by R. J. Mathar, Aug 10 2017

More terms from Giovanni Resta, Aug 11 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:36 EDT 2019. Contains 328292 sequences. (Running on oeis4.)