%I #10 Aug 12 2017 13:08:20
%S 2,9,30,87,234,597,1470,3522,8264,19067,43398,97659,217674,481221,
%T 1056370,2304676,5000934,10799564,23222114,49742577,106181710,
%U 225947089,479426238,1014615466,2142099088,4512515283,9486635788,19906068415,41696243298,87196489799
%N Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 2.
%H Lars Blomberg, <a href="/A290746/b290746.txt">Table of n, a(n) for n = 1..100</a>
%H Amy Glen, Jamie Simpson, W. F. Smyth, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i3p28">Counting Lyndon Factors</a>, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
%o (PARI) Inner(m,s)=d=divisors(m);sum(i=1,length(d),moebius(m/d[i])*s^d[i]);
%o Lyndon(s,n) = sum(m=1,n, (n-m+1)/m * s^(n-m) * Inner(m,s));
%o vector(100,i,Lyndon(2,i)) \\ _Lars Blomberg_, Aug 12 2017
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Aug 11 2017
%E a(11)-a(33) from _Lars Blomberg_, Aug 12 2017