This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290737 Weighted count of partitions of 2n+1 into odd parts in which the largest part appears an odd number of times and all other parts appear twice, with respect to a certain weight. 6
 1, 2, 1, 1, 2, -1, 1, 3, -2, 1, 2, 0, 2, 1, 0, -1, 5, 2, -1, 2, -3, 5, 3, -1, 2, 0, 1, 1, 2, -2, 2, 5, 2, -4, 0, 1, -1, 6, 0, 4, -3, -1, 3, -1, 2, 0, 4, -2, 2, 4, -2, 1, 5, -2, -2, -2, 4, 6, 1, 3, -2, 4, -3, -1, -2, 4, 6, 2, 0, -4, 5, 1, 3, -1, 0, 0, 4, -1, -2, 4, -2, 2, 5, 2, 5, -5, -2, 6, -4, 0, -3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See Andrews (2016) for the definition of the particular weight used here. Andrews (2016), Theorem 2, shows that A008443(n) = A290735(n) + A290737(n) + A290739(n). LINKS George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See Lemma 3.3. FORMULA See Maple code for g.f. MAPLE M:=201; B:=proc(a, q, n) local j, t1; global M; t1:=1; for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od; t1; end; D2:=add( q^(2*m+1)*B(q^2, q^4, m)/(1-q^(4*m+2)), m=0..M): series(D2, q, M); d2seq:=seriestolist(%); BISECT(%, 1); CROSSREFS Cf. A008443, A290733-A290740. Sequence in context: A322426 A145574 A182579 * A056138 A067594 A089533 Adjacent sequences:  A290734 A290735 A290736 * A290738 A290739 A290740 KEYWORD sign AUTHOR N. J. A. Sloane, Aug 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 17:32 EDT 2019. Contains 328373 sequences. (Running on oeis4.)