This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290540 Determinant of circulant matrix of order 10 with entries in the first row that are (-1)^(j-1)*Sum_{k>=0} (-1)^k*binomial(n, 10*k+j-1), for j=1..10. 1
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2276485387658524, -523547340003805770400, -39617190432735671861429500, -2896792542975174202888623380000, -95819032881785191861991031568287500, -1018409199709889673458815786392849200000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS a(n) = 0 for n == 9 (mod 10). A generalization. For an even N >= 2, consider the determinant of circulant matrix of order N with entries in the first row (-1)^(j-1)K_j(n), j=1..N, where K_j(n) = Sum_{k>=0} (-1)^k*binomial(n, N*k+j-1). Then it is 0 for n == N-1 (mod N). This statement follows from an easily proved identity K_j(N*t + N - 1) = (-1)^t*K_(N - j + 1)(N*t + N - 1) and a known calculation formula for the determinant of circulant matrix [Wikipedia]. Besides, it is 0 for n=1..N-2. We also conjecture that every such sequence contains infinitely many blocks of N-1 negative and N-1 positive terms separated by 0's. LINKS Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. Wikipedia, Circulant matrix MAPLE f:= n -> LinearAlgebra:-Determinant(Matrix(10, 10, shape=   Circulant[seq((-1)^j*add((-1)^k*binomial(n, 10*k+j),      k=0..(n-j)/10), j=0..9)])): map(f, [\$0..20]); # Robert Israel, Aug 08 2017 MATHEMATICA ro[n_] := Table[(-1)^(j-1) Sum[(-1)^k Binomial[n, 10k+j-1], {k, 0, n/10}], {j, 1, 10}]; M[n_] := Table[RotateRight[ro[n], m], {m, 0, 9}]; a[n_] := Det[M[n]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 10 2018 *) CROSSREFS Cf. A290286, A290535, A290539. Sequence in context: A047698 A246252 A058445 * A132910 A172550 A216908 Adjacent sequences:  A290537 A290538 A290539 * A290541 A290542 A290543 KEYWORD sign AUTHOR Vladimir Shevelev and Peter J. C. Moses, Aug 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 18 01:41 EST 2019. Contains 329242 sequences. (Running on oeis4.)