OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (6,0,0,0,1,-6).
FORMULA
From Colin Barker, Aug 04 2017: (Start)
G.f.: x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 6*a(n-1) + a(n-5) - 6*a(n-6) for n>6.
(End)
EXAMPLE
Base 6...........Decimal
3......................3
31....................19
314..................118
3141.................709
31415...............4259
314153.............25557
3141531...........153343
etc. - Colin Barker, Aug 04 2017
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {3, 1, 4, 1, 5}], 6], {n, 30}] (* or *) LinearRecurrence[{6, 0, 0, 0, 1, -6}, {3, 19, 118, 709, 4259, 25557}, 30]
PROG
(PARI) Vec(x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 04 2017
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Harvey P. Dale, Aug 03 2017
STATUS
approved