This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290477 Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 3,1,4,1,5 (the first five digits of Pi). 1
 3, 19, 118, 709, 4259, 25557, 153343, 920062, 5520373, 33122243, 198733461, 1192400767, 7154404606, 42926427637, 257558565827, 1545351394965, 9272108369791, 55632650218750, 333795901312501, 2002775407875011, 12016652447250069, 72099914683500415 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (6,0,0,0,1,-6). FORMULA From Colin Barker, Aug 04 2017: (Start) G.f.: x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)). a(n) = 6*a(n-1) + a(n-5) - 6*a(n-6) for n>6. (End) EXAMPLE Base 6...........Decimal 3......................3 31....................19 314..................118 3141.................709 31415...............4259 314153.............25557 3141531...........153343 etc. - Colin Barker, Aug 04 2017 MATHEMATICA Table[FromDigits[PadRight[{}, n, {3, 1, 4, 1, 5}], 6], {n, 30}] (* or *) LinearRecurrence[{6, 0, 0, 0, 1, -6}, {3, 19, 118, 709, 4259, 25557}, 30] PROG (PARI) Vec(x*(3 + x + 4*x^2 + x^3 + 5*x^4) / ((1 - x)*(1 - 6*x)*(1 + x + x^2 + x^3 + x^4)) + O(x^30)) \\ Colin Barker, Aug 04 2017 CROSSREFS Sequence in context: A084133 A005667 A098444 * A321002 A221184 A274852 Adjacent sequences:  A290474 A290475 A290476 * A290478 A290479 A290480 KEYWORD nonn,base,easy AUTHOR Harvey P. Dale, Aug 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 16:46 EST 2019. Contains 319335 sequences. (Running on oeis4.)