This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290394 First k-Ramanujan prime, where k = 1 + 1/n. 5
 2, 11, 11, 29, 29, 37, 37, 53, 127, 127, 127, 127, 127, 149, 149, 149, 211, 223, 223, 223, 307, 307, 331, 331, 331, 331, 331, 331, 331, 541, 541, 541, 541, 541, 541, 541, 541, 541, 541, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1693 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For real k > 1, the first k-Ramanujan prime is the smallest integer m with pi(x) - pi(x/k) >= 1 for all real x >= m. For 0 < c < 1, the first c-Ramanujan prime is the first k-Ramanujan prime with k = 1/c. Axler (2015, Cor. 2.4 and Prop. 2.5(ii)) and Axler and Leßmann (2017, Theorem 1) computed the first k-Ramanujan prime for all k >= 1.000040690557321. With k = 1 + 1/n, this gives 1 <= n <= 24575; in particular, a(24575) = 2898359. They also give the isolated result a(28313999) = 10726905041 on p. 646. The Mathematica program below is based on their algorithm but uses only part of their data (compare A277719) and is valid only for 1 <= n <= 1014; in particular, a(1014) = 48731. Their algorithm uses their result that for N > 1 the N-th prime p_N is the first k-Ramanujan prime if and only if p_N > k*p_{N-1} and p_n <= k*p_{n-1} for all n > N. See A104272 for additional comments, references, links, formulas, examples, programs, and cross-refs. LINKS N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13; arXiv:1108.0475 [math.NT], 2011. Christian Axler, On generalized Ramanujan primes, Ramanujan J., online 30 April 2015, 1-30. Christian Axler and Thomas Leßmann, An explicit upper bound for the first k-Ramanujan prime, arXiv:1504.05485 [math.NT], 2015. Christian Axler and Thomas Leßmann, On the first k-Ramanujan prime, Amer. Math. Monthly, 124 (2017), 642-646; correction by J. Sondow, Editor's endnotes, Amer. Math. Monthly, 124 (2017), 985. V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4. EXAMPLE a(1) = first 2-Ramanujan prime = first 1/2-Ramanujan prime = first Ramanujan prime = A104272(1) = 2. a(3) = first 4/3-Ramanujan prime = first 3/4-Ramanujan prime = A193880(1) = 11. MATHEMATICA A = {3, 5, 7, 10, 12, 16, 31, 35, 47, 48, 63, 67, 100, 218, 264, 298, 328,  368, 430, 463, 591, 651, 739, 758, 782, 843, 891, 929, 1060, 1184, 1230, 1316, 1410, 1832, 2226, 3386, 3645, 3794, 3796, 4523, 4613, 4755, 5009, 5950}; kR1[k_] := If[k >= 5/3, 2, (m = 1;    While[k >= Prime[A[[m]]]/Prime[A[[m]] - 1] ||      k < Prime[A[[m + 1]]]/Prime[A[[m + 1]] - 1], m++];    Prime[A[[m]]])]; Table[kR1[1 + 1/n], {n, 70}] CROSSREFS Cf. A104272, A164952, A193761, A193880, A277718, A277719. Sequence in context: A265561 A265545 A153705 * A292779 A245521 A275617 Adjacent sequences:  A290391 A290392 A290393 * A290395 A290396 A290397 KEYWORD nonn AUTHOR Jonathan Sondow, Jul 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 16:32 EST 2019. Contains 319309 sequences. (Running on oeis4.)