OFFSET
0,3
COMMENTS
The length of row n of this irregular triangle is 2*n+1.
The e.g.f. of the (n+1)-th diagonal sequence of the squares of Pascal's triangle (A008459) is EDP2(n, t) = Sum_{m=0..n} binomial(n+m, m)^2*t^m/m!, for n >= 0. It turns out to be EDP2(n, t) = exp(t)*Sum_{k=0..2*n) T(n ,k)*t^k/k!.
This has been computed from the corresponding o.g.f.: GDP2(n, x) = Sum_{m=0..n} binomial(n+m, m)^2*x^m, which is GDP2(n, x) = Sum_{m=0..n} binomial(n,m)^2*x^m / (1 - x)^(2*n+1) (see the triangle A008459, and comments in A288876 on how to compute these o.g.f.s). To obtain the e.g.f.s from the o.g.f.s the formulas (23) - (25) of the W. Lang link given in A060187 have been used.
LINKS
M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
FORMULA
T(n, k) = Sum_{i = 0..k} binomial(2*n - i, k-i)*binomial(n, i)^2.
From Peter Bala, Feb 06 2018: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*binomial(n+i,i)^2.
T(n,k) = Sum_{i = 0..k} binomial(n,i)*binomial(n,k-i)*binomial(n+k-i,k-i).
Recurrence: (2*n-k)*(2*n-k-1)T(n,k) = (5*n^2+2*n*k+1-4*n-k)*T(n-1,k) - (n-1)^2*T(n-2,k).
n-th row polynomial R(n,x) = (1 + x)^n * P(n,2*x + 1) = (1 + x)^n * the n-th row polynomial of A063007, where P(n,x) is the n-th Legendre polynomial.
R(n,x) = Sum_{k >= 0} binomial(n+k,k)^2 * x^k/(1 + x)^(k+1).
(x - 1)^(2*n)/x^n * R(n,1/(x - 1)) = Sum_{k = 0..n} binomial(n,k)^2*x^k, the n-th row polynomial of A008459.
R(n,x) = (1 + x)^n o (1 + x)^n where o denotes the black diamond product of power series as defined in Dukes and White.
R(n,x) = coefficient of u^n*v^n in the expansion of the rational function 1/((1+x)*(1+u)(1+v) - x). (End)
T(n,k) = binomial(2*n, k)*hypergeom([-k, -n, -n],[1, -2*n], 1). - Peter Luschny, Feb 10 2018
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 ..,
0: 1
1: 1 3 2
2: 1 8 19 18 6
3: 1 15 69 147 162 90 20
4: 1 24 176 624 1251 1500 1070 420 70
5: 1 35 370 1920 5835 11253 14240 11830 6230 1890 252
6: 1 48 687 4850 20385 55908 104959 137886 127050 80640 33642 8316 924
...
7: 1 63 1169 10703 58821 214123 545629 1004307 1356194 1347318 974862 500346 172788 36036 3432,
8: 1 80 1864 21392 147952 683648 2240560 5401952 9793891 13507416 14210532 11337480 6749358 2906904 856284 154440 12870,
9: 1 99 2826 39624 335376 1906128 7747152 23429808 54099027 96918753 135916002 149594148 128769102 85783698 43366752 16087500 4131270 656370 48620.
...
n = 3: The e.g.f. of the fourth diagonal sequence of A008459 is A001249 = [1, 16, 100, ...] is exp(t)*(1 + 15*t + 69*t^2/2! + 147*t^3/3! + 162*t^4/4! + 90*t^5/5! + 20*t^6/6!). The corresponding o.g.f. from which the e.g.f. has been computed is (1 + x)(1 + 8*x + x^2)/(1 - x)^7 = (1+9*x+9*x^2 + x^3)/(1 - x)^7.
MAPLE
T := (n, k) -> binomial(2*n, k)*hypergeom([-k, -n, -n], [1, -2*n], 1):
seq(seq(simplify(T(n, k)), k=0..2*n), n=0..7); # Peter Luschny, Feb 10 2018
MATHEMATICA
Table[Sum[Binomial[2 n - i, k - i] Binomial[n, i]^2, {i, 0, k}], {n, 0, 7}, {k, 0, 2 n}] // Flatten (* Michael De Vlieger, Jul 30 2017 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Wolfdieter Lang, Jul 27 2017
STATUS
approved