login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290286 Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3. 4
1, 0, 0, 0, -1008, -37120, -473600, 0, 63996160, 702013440, 2893578240, 0, -393379835904, -12971004067840, -160377313820672, 0, 21792325059543040, 239501351489372160, 987061897553510400, 0, -134124249770961666048, -4422152303189489090560 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

In the Shevelev link the author proved that, for odd N>=3 and every n>=1, the determinant of circulant matrix of order N with entries in the first row (-1)^j*Sum{k>=0}(-1)^k*binomial(n, N*k+j), j=0..N-1, is 0.

This sequence shows what happens for the first even N>3.

LINKS

Table of n, a(n) for n=0..21.

Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.

Wikipedia, Circulant matrix

FORMULA

a(n) = 0 for n == 3 (mod 4).

G.f. (empirical): (1/8)*(68*x^2+1)/(16*x^4+136*x^2+1)+(1/4)*(68*x^2-8*x+1)/(16*x^4+64*x^3+128*x^2-16*x+1)+(1/2)*(12*x^2+1)/(16*x^4+24*x^2+1)+3/(8*(4*x^2+1))-(1/4)*(12*x^2-4*x+1)/(16*x^4-32*x^3+32*x^2-8*x+1)-(1/4)*(4*x^2+1)/(16*x^4+1)+(1/4)*(12*x^2+4*x+1)/(16*x^4+32*x^3+32*x^2+8*x+1). - Robert Israel, Jul 26 2017

MAPLE

seq(LinearAlgebra:-Determinant(Matrix(4, shape=Circulant[seq((-1)^j*

add((-1)^k*binomial(n, 4*k+j), k=0..n/4), j=0..3)])), n=0..50); # Robert Israel, Jul 26 2017

MATHEMATICA

ro[n_] := Table[Sum[(-1)^(j+k) Binomial[n, 4k+j], {k, 0, n/4}], {j, 0, 3}];

M[n_] := Table[RotateRight[ro[n], m], {m, 0, 3}];

a[n_] := Det[M[n]];

Table[a[n], {n, 0, 21}] (* Jean-Fran├žois Alcover, Aug 09 2018 *)

PROG

(Python)

from sympy.matrices import Matrix

from sympy import binomial, floor

def mj(j, n): return (-1)**j*sum([(-1)**k*binomial(n, 4*k + j) for k in range(floor(n/4) + 1)])

def a(n):

    m=Matrix(4, 4, [0]*16)

for j in range(4):m[0, j]=mj(j, n)

for j in range(1, 4):m[1, j]=m[0, j - 1]

    m[1, 0]=m[0, 3]

for j in range(1, 4):m[2, j] = m[1, j - 1]

    m[2, 0]=m[1, 3]

for j in range(1, 4):m[3, j] = m[2, j - 1]

    m[3, 0]=m[2, 3]

    return m.det()

print map(a, range(22)) # Indranil Ghosh, Jul 31 2017

CROSSREFS

Cf. A099586 (prefixed by a(0)=1), A099587, A099588, A099589, A290285.

Sequence in context: A160451 A254973 A092924 * A187863 A280869 A145235

Adjacent sequences:  A290283 A290284 A290285 * A290287 A290288 A290289

KEYWORD

sign,changed

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Jul 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)