This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290286 Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3. 4
 1, 0, 0, 0, -1008, -37120, -473600, 0, 63996160, 702013440, 2893578240, 0, -393379835904, -12971004067840, -160377313820672, 0, 21792325059543040, 239501351489372160, 987061897553510400, 0, -134124249770961666048, -4422152303189489090560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS In the Shevelev link the author proved that, for odd N>=3 and every n>=1, the determinant of circulant matrix of order N with entries in the first row (-1)^j*Sum{k>=0}(-1)^k*binomial(n, N*k+j), j=0..N-1, is 0. This sequence shows what happens for the first even N>3. LINKS Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017. Wikipedia, Circulant matrix FORMULA a(n) = 0 for n == 3 (mod 4). G.f. (empirical): (1/8)*(68*x^2+1)/(16*x^4+136*x^2+1)+(1/4)*(68*x^2-8*x+1)/(16*x^4+64*x^3+128*x^2-16*x+1)+(1/2)*(12*x^2+1)/(16*x^4+24*x^2+1)+3/(8*(4*x^2+1))-(1/4)*(12*x^2-4*x+1)/(16*x^4-32*x^3+32*x^2-8*x+1)-(1/4)*(4*x^2+1)/(16*x^4+1)+(1/4)*(12*x^2+4*x+1)/(16*x^4+32*x^3+32*x^2+8*x+1). - Robert Israel, Jul 26 2017 MAPLE seq(LinearAlgebra:-Determinant(Matrix(4, shape=Circulant[seq((-1)^j* add((-1)^k*binomial(n, 4*k+j), k=0..n/4), j=0..3)])), n=0..50); # Robert Israel, Jul 26 2017 MATHEMATICA ro[n_] := Table[Sum[(-1)^(j+k) Binomial[n, 4k+j], {k, 0, n/4}], {j, 0, 3}]; M[n_] := Table[RotateRight[ro[n], m], {m, 0, 3}]; a[n_] := Det[M[n]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *) PROG (Python) from sympy.matrices import Matrix from sympy import binomial, floor def mj(j, n): return (-1)**j*sum([(-1)**k*binomial(n, 4*k + j) for k in range(floor(n/4) + 1)]) def a(n):     m=Matrix(4, 4, [0]*16) for j in range(4):m[0, j]=mj(j, n) for j in range(1, 4):m[1, j]=m[0, j - 1]     m[1, 0]=m[0, 3] for j in range(1, 4):m[2, j] = m[1, j - 1]     m[2, 0]=m[1, 3] for j in range(1, 4):m[3, j] = m[2, j - 1]     m[3, 0]=m[2, 3]     return m.det() print map(a, range(22)) # Indranil Ghosh, Jul 31 2017 CROSSREFS Cf. A099586 (prefixed by a(0)=1), A099587, A099588, A099589, A290285. Sequence in context: A160451 A254973 A092924 * A187863 A280869 A145235 Adjacent sequences:  A290283 A290284 A290285 * A290287 A290288 A290289 KEYWORD sign,changed AUTHOR Vladimir Shevelev and Peter J. C. Moses, Jul 26 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)