OFFSET
0,4
COMMENTS
In the Shevelev link the author proved that, for even N>=2 and every n>=1, the determinant of circulant matrix of order N with entries in the first row being (-1)^j*Sum_{k>=0} binomial(n,N*k+j), j=0..N-1, is 0. This sequence shows what happens for the first odd N>2.
LINKS
Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
Wikipedia, Circulant matrix
FORMULA
G.f.: (1-12*x+48*x^2-73*x^3+6*x^4-60*x^5+736*x^6-576*x^7)/((1+x)*(-1+2*x)*(-1+8*x)* (1-x+x^2)*(1+2*x+4*x^2)*(1-4*x+16*x^2)). - Peter J. C. Moses, Jul 26 2017
MAPLE
a:= n-> LinearAlgebra[Determinant](Matrix(3, shape=Circulant[seq(
(-1)^j*add(binomial(n, 3*k+j), k=0..(n-j)/3), j=0..2)])):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 27 2017
MATHEMATICA
ro[n_] := Table[(-1)^j Sum[Binomial[n, 3k+j], {k, 0, n/3}], {j, 0, 2}];
M[n_] := Table[RotateRight[ro[n], m], {m, 0, 2}];
a[n_] := Det[M[n]];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
PROG
(PARI) mj(j, n) = (-1)^j*sum(k=0, n\3, binomial(n, 3*k+j));
a(n) = {m = matrix(3, 3); for (j=1, 3, m[1, j] = mj(j-1, n)); for (j=2, 3, m[2, j] = m[1, j-1]); m[2, 1] = m[1, 3]; for (j=2, 3, m[3, j] = m[2, j-1]); m[3, 1] = m[2, 3]; matdet(m); } \\ Michel Marcus, Jul 26 2017
(Python)
from sympy.matrices import Matrix
from sympy import binomial
def mj(j, n):
return (-1)**j*sum(binomial(n, 3*k + j) for k in range(n//3 + 1))
def a(n):
m=Matrix(3, 3, [0]*9)
for j in range(3):m[0, j]=mj(j, n)
for j in range(1, 3):m[1, j]=m[0, j - 1]
m[1, 0]=m[0, 2]
for j in range(1, 3):m[2, j] = m[1, j - 1]
m[2, 0]=m[1, 2]
return m.det()
print([a(n) for n in range(22)]) # Indranil Ghosh, Jul 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Jul 26 2017
EXTENSIONS
More terms from Peter J. C. Moses, Jul 26 2017
STATUS
approved