login
A290219
a(n) = n! * [x^n] exp(exp(x) - n*x - 1).
9
1, 0, 2, -13, 127, -1573, 23711, -421356, 8626668, -199971255, 5177291275, -148078588667, 4636966634653, -157786054331852, 5797411243015250, -228749440644895405, 9646951350227609155, -433035586385769361001, 20614401475233006857035, -1037331650810058231498688
OFFSET
0,3
COMMENTS
The n-th term of the n-th inverse binomial transform of A000110.
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ (-1)^n * exp(exp(-1) - 1) * n^n. - Vaclav Kotesovec, Aug 04 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
k*b(n-1, k)+ b(n-1, k+1))
end:
a:= n-> b(n, -n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
MATHEMATICA
Table[n! SeriesCoefficient[Exp[Exp[x] - n x - 1], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[Sum[(-n)^(n - k) Binomial[n, k] BellB[k] , {k, 0, n}], {n, 1, 19}]]
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
A290219:= func< n | Coefficient(R!(Laplace( Exp(Exp(x)-n*x-1) )), n) >;
[A290219(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
(SageMath) [factorial(n)*( exp(exp(x) -n*x -1) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jun 12 2024
CROSSREFS
Main diagonal of A361781.
Sequence in context: A071362 A108471 A036078 * A057065 A259611 A351299
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Oct 06 2017
STATUS
approved