login
A290164
Primes p such that both 4*p - 3 and 3*p - 4 are prime.
3
2, 5, 11, 19, 29, 59, 61, 79, 89, 131, 149, 151, 191, 389, 431, 479, 499, 521, 541, 571, 631, 659, 701, 739, 919, 941, 971, 1069, 1181, 1279, 1289, 1361, 1381, 1451, 1471, 1489, 1669, 1949, 2069, 2089, 2131, 2549, 2609, 2749, 2791, 3011, 3109, 3181, 3251, 3361
OFFSET
1,1
COMMENTS
For n >= 3, all terms end in 1 or 9. - Robert Israel, Jul 24 2017
LINKS
MAPLE
select(p -> isprime(p) and isprime(4*p-3) and isprime(3*p-4), [2, seq(i, i=3..10000, 2)]); # Robert Israel, Jul 24 2017
MATHEMATICA
Select[Prime@ Range@ 500, Times @@ Boole@ Map[PrimeQ, {4 # - 3, 3 # - 4}] > 0 &] (* Michael De Vlieger, Jul 23 2017 *)
PROG
(PARI) forprime(p=2, 10000, if (isprime(3*p-4) && isprime(4*p-3), print1(p, ", "))) \\ Michel Marcus, Jul 23 2017
CROSSREFS
Cf. A259730, A290163 (a subsequence).
Sequence in context: A215762 A085626 A258031 * A160536 A024979 A019341
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Michel Marcus, Jul 23 2017
STATUS
approved