login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Tribonacci-like sequence of composite numbers with a(0) = 151646890045, a(1) = 836564809606 and a(2) = 942785024683.
2

%I #14 Jul 22 2017 12:57:19

%S 151646890045,836564809606,942785024683,1930996724334,3710346558623,

%T 6584128307640,12225471590597,22519946456860,41329546355097,

%U 76074964402554,139924457214511,257328967972162,473328389589227,870581814775900,1601239172337289,2945149376702416

%N Tribonacci-like sequence of composite numbers with a(0) = 151646890045, a(1) = 836564809606 and a(2) = 942785024683.

%H Seiichi Manyama, <a href="/A290157/b290157.txt">Table of n, a(n) for n = 0..3735</a>

%H Ivan Lunev, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Lunev/lunev3.html">A Tribonacci-Like Sequence of Composite Numbers</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.2.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1)

%F From _Colin Barker_, Jul 22 2017: (Start)

%F G.f.: (151646890045 + 684917919561*x - 45426674968*x^2) / (1 - x - x^2 - x^3).

%F a(n) = a(n-1) + a(n-2) + a(n-3) for n>2.

%F (End)

%o (PARI) Vec((151646890045 + 684917919561*x - 45426674968*x^2) / (1 - x - x^2 - x^3) + O(x^20)) \\ _Colin Barker_, Jul 22 2017

%Y Cf. A000073, A290156.

%K nonn,easy

%O 0,1

%A _Seiichi Manyama_, Jul 22 2017