login
A290028
Number of 5-cycles in the n-halved cube graph.
3
0, 0, 0, 288, 5664, 50688, 314496, 1569792, 6773760, 26320896, 94482432, 318726144, 1022681088, 3148873728, 9366110208, 27051687936, 76178522112, 209845223424, 566967140352, 1505815953408, 3938646491136, 10161657741312, 25894399770624, 65248539181056
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Halved Cube Graph
Index entries for linear recurrences with constant coefficients, signature (12, -60, 160, -240, 192, -64).
FORMULA
a(n) = 3*2^n*binomial(n,4)*(29*n-86)/5.
a(n) = 12*a(n-1)-60*a(n-2)+160*a(n-3)-240*a(n-4)+192*a(n-5)-64*a(n-6).
G.f.: (96*x*(3*x^3 + 23*x^4))/(-1 + 2*x)^6.
MATHEMATICA
Table[3 2^n Binomial[n, 4] (29 n - 86)/5, {n, 20}]
LinearRecurrence[{12, -60, 160, -240, 192, -64}, {0, 0, 0, 288, 5664, 50688}, 20]
CoefficientList[Series[(96 (3 x^3 + 23 x^4))/(-1 + 2 x)^6, {x, 0, 20}], x]
CROSSREFS
Cf. A290026 (3-cycles), A290027 (4-cycles), A290029 (6-cycles).
Sequence in context: A229506 A332429 A232340 * A330817 A299860 A264204
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jul 17 2017
STATUS
approved