The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290012 a(n) is the smallest prime number p satisfying p^2 >= Sum_{1 <= k <= n} prime(k)^2. 1
 2, 5, 7, 11, 17, 23, 29, 37, 41, 53, 59, 71, 83, 97, 103, 127, 131, 149, 163, 179, 191, 211, 223, 239, 257, 277, 307, 317, 337, 353, 373, 397, 419, 443, 467, 491, 521, 541, 569, 593, 617, 643, 673, 701, 727, 757, 787, 821, 853, 877, 907, 937 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: The only twin prime pair in the sequence is (5, 7). LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 EXAMPLE The prime number 17 is the fifth term because the sum of squares of the first 5 prime numbers is 2^2 + 3^2 + 5^2 + 7^2 + 11^2 = 208 < 17^2 = 289. MATHEMATICA Table[Function[k, p = 2; While[p^2 < k, p = NextPrime@ p]; p][Total[Prime[Range@ n]^2]], {n, 52}] (* Michael De Vlieger, Jul 18 2017 *) spn[n_]:=Module[{k=Ceiling[Sqrt[n]]}, If[PrimeQ[k], k, NextPrime[k]]]; spn/@ Accumulate[Prime[Range[60]]^2] (* Harvey P. Dale, May 20 2021 *) PROG (PARI) { sp=0; p=0; forprime(n=2, 200, sp+=n^2; while(p^2= s, return(p))) \\ Felix Fröhlich, Jul 18 2017 CROSSREFS Cf. A076873. Sequence in context: A162575 A066408 A142352 * A062044 A077128 A106008 Adjacent sequences: A290009 A290010 A290011 * A290013 A290014 A290015 KEYWORD nonn AUTHOR Dimitris Valianatos, Jul 17 2017 EXTENSIONS Definition clarified by Felix Fröhlich, Jul 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 12:24 EST 2023. Contains 360035 sequences. (Running on oeis4.)