This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289975 p-INVERT of the Fibonacci numbers (A000045, including 0), where p(S) = 1 - S - S^2. 5
 0, 1, 1, 4, 7, 18, 37, 85, 183, 407, 888, 1956, 4284, 9409, 20630, 45270, 99289, 217819, 477776, 1048053, 2298912, 5042783, 11061455, 24263687, 53223023, 116746272, 256086074, 561731936, 1232174181, 2702807740, 5928681960, 13004724921, 28526216361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A290890 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2, 2, -3, -1) FORMULA G.f.: (x - x^2)/(1 - 2 x - 2 x^2 + 3 x^3 + x^4). a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - a(n-4). MATHEMATICA z = 60; s = x^2/(1 - x - x^2); p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A289975 *) CROSSREFS Cf. A000045, A289781, A289976, A289780. Sequence in context: A146387 A219498 A219754 * A124400 A077920 A234269 Adjacent sequences:  A289972 A289973 A289974 * A289976 A289977 A289978 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 01:20 EDT 2019. Contains 321444 sequences. (Running on oeis4.)