login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289925 p-INVERT of the lower Wythoff sequence (A000201), where p(S) = 1 - S - S^2. 3

%I

%S 1,5,19,72,265,979,3618,13374,49447,182807,675843,2498594,9237316,

%T 34150422,126254366,466763346,1725627604,6379658213,23585644300,

%U 87196304028,322365390600,1191787269208,4406046481612,16289186920873,60221246337260,222638399818776

%N p-INVERT of the lower Wythoff sequence (A000201), where p(S) = 1 - S - S^2.

%C Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

%C See A289780 for a guide to related sequences.

%t z = 60; r = GoldenRatio; s = Sum[Floor[k*r] x^k, {k, 1, z}]; p = 1 - s - s^2;

%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000201 *)

%t Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1] (* A289925 *)

%Y Cf. A000201, A289926.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Aug 14 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 20:59 EDT 2019. Contains 322328 sequences. (Running on oeis4.)