This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289925 p-INVERT of the lower Wythoff sequence (A000201), where p(S) = 1 - S - S^2. 3
 1, 5, 19, 72, 265, 979, 3618, 13374, 49447, 182807, 675843, 2498594, 9237316, 34150422, 126254366, 466763346, 1725627604, 6379658213, 23585644300, 87196304028, 322365390600, 1191787269208, 4406046481612, 16289186920873, 60221246337260, 222638399818776 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A289780 for a guide to related sequences. LINKS MATHEMATICA z = 60; r = GoldenRatio; s = Sum[Floor[k*r] x^k, {k, 1, z}]; p = 1 - s - s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000201 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x] , 1]  (* A289925 *) CROSSREFS Cf. A000201, A289926. Sequence in context: A149762 A299107 A086386 * A047155 A295046 A034548 Adjacent sequences:  A289922 A289923 A289924 * A289926 A289927 A289928 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 20:35 EDT 2019. Contains 321382 sequences. (Running on oeis4.)