The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289837 Number of cliques in the n-tetrahedral graph. 10
 1, 1, 2, 16, 76, 261, 757, 2003, 5035, 12286, 29426, 69554, 162670, 376923, 865971, 1973941, 4466853, 10040524, 22430584, 49829116, 110127536, 242254321, 530619937, 1157676711, 2516640751, 5452664426, 11777687182, 25367246038, 54492508610, 116769551831 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Here, "cliques" means complete subgraphs (not necessarily the largest). Sequence extended to a(1) using formula. - Andrew Howroyd, Jul 18 2017 From Gus Wiseman, Jan 11 2019: (Start) The n-tetrahedral graph has all 3-subsets of {1,...,n} as vertices, and two are connected iff they share two elements. So a(n) is the number of 3-uniform hypergraphs on n labeled vertices where every two edges have two vertices in common. For example, the a(4) = 16 hypergraphs are:   {}   {{1,2,3}}   {{1,2,4}}   {{1,3,4}}   {{2,3,4}}   {{1,2,3},{1,2,4}}   {{1,2,3},{1,3,4}}   {{1,2,3},{2,3,4}}   {{1,2,4},{1,3,4}}   {{1,2,4},{2,3,4}}   {{1,3,4},{2,3,4}}   {{1,2,3},{1,2,4},{1,3,4}}   {{1,2,3},{1,2,4},{2,3,4}}   {{1,2,3},{1,3,4},{2,3,4}}   {{1,2,4},{1,3,4},{2,3,4}}   {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} The following are non-isomorphic representatives of the 7 unlabeled 3-uniform cliques on 6 vertices, and their multiplicities in the labeled case, which add up to a(6) = 261.    1 X {}   20 X {{1,2,3}}   90 X {{1,3,4},{2,3,4}}   60 X {{1,4,5},{2,4,5},{3,4,5}}   60 X {{1,2,4},{1,3,4},{2,3,4}}   15 X {{1,5,6},{2,5,6},{3,5,6},{4,5,6}}   15 X {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} (End) LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 Eric Weisstein's World of Mathematics, Clique Eric Weisstein's World of Mathematics, Tetrahedral Graph Index entries for linear recurrences with constant coefficients, signature (11,-52,138,-225,231,-146,52,-8). FORMULA a(n) = 1 + binomial(n,3) + (2^(n-2)-n+1)*binomial(n,2) + 5*binomial(n,4). - Andrew Howroyd, Jul 18 2017 a(n) = 11*a(n-1)-52*a(n-2)+138*a(n-3)-225*a(n-4)+231*a(n-5)-146*a(n-6)+52*a(n-7)-8*a(n-8). - Eric W. Weisstein, Jul 21 2017 From Colin Barker, Jul 19 2017: (Start) G.f.: x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3). a(n) = (24 - (34+3*2^n)*n + (67+3*2^n)*n^2 - 38*n^3 + 5*n^4) / 24. (End) Binomial transform of A323294. - Gus Wiseman, Jan 11 2019 MATHEMATICA Table[(2^(n - 2) - n + 1) Binomial[n, 2] + Binomial[n, 3] +   5 Binomial[n, 4] + 1, {n, 20}] (* Eric W. Weisstein, Jul 21 2017 *) LinearRecurrence[{11, -52, 138, -225, 231, -146, 52, -8}, {1, 1, 2, 16, 76, 261, 757, 2003}, 20] (* Eric W. Weisstein, Jul 21 2017 *) CoefficientList[Series[(1 - 10 x + 43 x^2 - 92 x^3 + 91 x^4 - 25 x^5 - 5 x^6 - 8 x^7)/((-1 + x)^5 (-1 + 2 x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 21 2017 *) stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]]; Table[Length[stableSets[Subsets[Range[n], {3}], Length[Intersection[#1, #2]]<=1&]], {n, 6}] (* Gus Wiseman, Jan 11 2019 *) PROG (PARI) a(n) = 1 + binomial(n, 3) + (2^(n-2)-n+1)*binomial(n, 2) + 5*binomial(n, 4); \\ Andrew Howroyd, Jul 18 2017 (PARI) Vec(x*(1 - 10*x + 43*x^2 - 92*x^3 + 91*x^4 - 25*x^5 - 5*x^6 - 8*x^7) / ((1 - x)^5*(1 - 2*x)^3) + O(x^40)) \\ Colin Barker, Jul 19 2017 CROSSREFS Cf. A055795 (maximal cliques), A287232 (independent vertex sets), A290056 (triangular graph). Cf. A000665, A125791, A299471, A302374, A302394, A322451, A323293, A323296, A323298. Sequence in context: A207839 A216424 A212897 * A323297 A034581 A028336 Adjacent sequences:  A289834 A289835 A289836 * A289838 A289839 A289840 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, Jul 13 2017 EXTENSIONS a(1)-a(5) and a(21)-a(30) from Andrew Howroyd, Jul 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 23:28 EDT 2020. Contains 335669 sequences. (Running on oeis4.)