OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x + ^2c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1, 7, 1, -9, -3, 5, 1, -1)
FORMULA
G.f.: (1 + 3 x + x^2 - 3 x^3 - 3 x^4 + x^5 + x^6)/(1 - x - 7 x^2 - x^3 +
9 x^4 + 3 x^5 - 5 x^6 - x^7 + x^8).
a(n) = a(n-1) + 7*a(n-2) + a(n-3) - 9*a(n-4) - 3*a(n-5) + 5*a(n-6) + a(n-7) - a(n-8)..
MATHEMATICA
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved