login
A289803
p-INVERT of the even bisection (A001906) of the Fibonacci numbers, where p(S) = 1 - S - S^2.
3
1, 5, 23, 103, 456, 2009, 8833, 38803, 170399, 748176, 3284833, 14421533, 63314735, 277968871, 1220356440, 5357681369, 23521603225, 103265890987, 453363808127, 1990383615264, 8738295434881, 38363361811637, 168425013526727, 739429075564711, 3246283590352104
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.
LINKS
Rigoberto Flórez, Javier González, Mateo Matijasevick, Cristhian Pardo, José Luis Ramírez, Lina Simbaqueba, and Fabio Velandia, Lattice paths in corridors and cyclic corridors, Contrib. Disc. Math. (2024) Vol. 19. No. 2, 36-55. See p. 11.
FORMULA
G.f.: (1 - 2 x + x^2)/(1 - 7 x + 13 x^2 - 7 x^3 + x^4).
a(n) = 7*a(n-1) - 13*a(n-2) + 7*a(n-3) - a(n-4).
MATHEMATICA
z = 60; s = x/(1 - 3*x + x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A001906 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289803 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 12 2017
STATUS
approved