login
A289792
Number of 4-cycles in the n-tetrahedral graph.
4
0, 0, 0, 0, 90, 540, 1995, 5775, 14280, 31500, 63630, 119790, 212850, 360360, 585585, 918645, 1397760, 2070600, 2995740, 4244220, 5901210, 8067780, 10862775, 14424795, 18914280, 24515700, 31439850, 39926250, 50245650, 62702640, 77638365, 95433345, 116510400
OFFSET
1,5
COMMENTS
Extended to a(1)-a(5) using the formula.
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Tetrahedral Graph
FORMULA
a(n) = binomial(n - 1, 4) * (210 - 41*n + 7*n^2)/2.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
G.f.: (-15*x^5*(6 - 6*x + 7*x^2))/(-1 + x)^7.
MATHEMATICA
Table[Binomial[n - 1, 4] (210 - 41 n + 7 n^2)/2, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 0, 90, 540, 1995}, 20]
CoefficientList[Series[-((15 x^4 (6 - 6 x + 7 x^2))/(-1 + x)^7), {x, 0, 20}], x]
CROSSREFS
Cf. A027789 (3-cycles), A289793 (5-cycles), A289794 (6-cycles).
Sequence in context: A203734 A066116 A233638 * A156738 A211446 A203787
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 12 2017
STATUS
approved