login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289790 p-INVERT of A016789, where p(S) = 1 - S - S^2. 3
2, 13, 72, 385, 2056, 11000, 58872, 315065, 1686086, 9023167, 48287964, 258415702, 1382925814, 7400803253, 39605804028, 211952630117, 1134276112400, 6070140759292, 32484690838716, 173843602765153, 930333564584074, 4978731041147699, 26643951936925764 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

See A289780 for a guide to related sequences.

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6, -5, 8, 1)

FORMULA

G.f.: (-2 - x - 4 x^2 - 2 x^3)/(-1 + 6 x - 5 x^2 + 8 x^3 + x^4).

a(n) = 6*a(n-1) - 5*a(n-2) + 8*a(n-3) + a(n-4).

MATHEMATICA

z = 60; s = x (2 + x)/(1 - x)^2; p = 1 - s - s^2;

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A016789 *)

Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289790 *)

CROSSREFS

Cf. A016789, A289780.

Sequence in context: A289926 A188676 A097349 * A109112 A163190 A242991

Adjacent sequences:  A289787 A289788 A289789 * A289791 A289792 A289793

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 15:17 EDT 2019. Contains 323569 sequences. (Running on oeis4.)