login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that k!6 - 24 is prime, where k!6 is the sextuple factorial number (A085158).
1

%I #14 Dec 01 2018 17:38:58

%S 9,11,13,17,23,25,29,31,37,43,53,65,71,77,79,115,119,151,173,559,793,

%T 1571,1715,1807,1861,2047,2215,3491,4751,6631,9089,9139,9253,25811,

%U 29491,29495,54335,54991,66535,72365

%N Numbers k such that k!6 - 24 is prime, where k!6 is the sextuple factorial number (A085158).

%C Corresponding primes are: 3, 31, 67, 911, 21481, 43201, 623621, 1339951, ...

%C a(41) > 10^5.

%C Terms > 43 correspond to probable primes.

%H Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!6-24&amp;action=Search">PRP Records. Search for n!6-24.</a>

%H Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa%40btinternet.com/probprim2.htm">Interesting Sources of Probable Primes</a>

%H OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a>

%e 13!6 - 4 = 13*7*1 - 24 = 67 is prime, so 13 is in the sequence.

%t MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];

%t Select[Range[9, 50000], PrimeQ[MultiFactorial[#, 6] - 24] &]

%t Select[Range[8,5000],PrimeQ[Times@@Range[#,1,-6]-24]&] (* _Harvey P. Dale_, Dec 01 2018 *)

%Y Cf. A007661, A037082, A084438, A123910, A242994.

%K nonn,more

%O 1,1

%A _Robert Price_, Jul 09 2017

%E a(37)-a(40) from _Robert Price_, Aug 03 2018