%I #26 Mar 05 2018 07:11:32
%S 1,732,483336,299831152,179912034330,105705360893664,
%T 61212394149183536,35074084087016521152,19935701871161896669257,
%U 11259521840932766778870360,6326766973556024191050129528,3540038281600931271753859693440
%N Coefficients in expansion of q * Product_{n>=1} (1 - q^n)^24/E_6^(3/2).
%H Seiichi Manyama, <a href="/A289571/b289571.txt">Table of n, a(n) for n = 1..366</a>
%H M. Eichler and D. Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/doi/10.1007/BF01453974/fulltext.pdf">On the zeros of the Weierstrass P-function</a>, Math. Ann. 258 (1981/82), 399-407.
%F Sum_{n>=1} a(n)/n^2 * exp(-2*Pi*n) = (Pi - log(5+2*sqrt(6)))/(72*sqrt(6)).
%F a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = sqrt(2)/(432*sqrt(Pi)) = 0.001846955001858484620092342870066582724425271440578401192897804766993... - _Vaclav Kotesovec_, Jul 09 2017, updated Mar 05 2018
%e G.f.: q + 732*q^2 + 483336*q^3 + 299831152*q^4 + 179912034330*q^5 + ...
%t nmax = 20; CoefficientList[Series[Product[(1 - x^k)^24, {k, 1, nmax}] / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(3/2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 09 2017 *)
%Y Cf. A000594, A289570 (1/E_6^(3/2)).
%K nonn
%O 1,2
%A _Seiichi Manyama_, Jul 08 2017