This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A289571 Coefficients in expansion of q * Product_{n>=1} (1 - q^n)^24/E_6^(3/2). 1
 1, 732, 483336, 299831152, 179912034330, 105705360893664, 61212394149183536, 35074084087016521152, 19935701871161896669257, 11259521840932766778870360, 6326766973556024191050129528, 3540038281600931271753859693440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..366 M. Eichler and D. Zagier, On the zeros of the Weierstrass P-function, Math. Ann. 258 (1981/82), 399-407. FORMULA Sum_{n>=1} a(n)/n^2 * exp(-2*Pi*n) = (Pi - log(5+2*sqrt(6)))/(72*sqrt(6)). a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = sqrt(2)/(432*sqrt(Pi)) = 0.001846955001858484620092342870066582724425271440578401192897804766993... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018 EXAMPLE G.f.: q + 732*q^2 + 483336*q^3 + 299831152*q^4 + 179912034330*q^5 + ... MATHEMATICA nmax = 20; CoefficientList[Series[Product[(1 - x^k)^24, {k, 1, nmax}] / (1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *) CROSSREFS Cf. A000594, A289570 (1/E_6^(3/2)). Sequence in context: A031705 A158396 A098263 * A098291 A255798 A044988 Adjacent sequences:  A289568 A289569 A289570 * A289572 A289573 A289574 KEYWORD nonn AUTHOR Seiichi Manyama, Jul 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:15 EST 2019. Contains 329885 sequences. (Running on oeis4.)