login
A289570
Coefficients in expansion of 1/E_6^(3/2).
4
1, 756, 501228, 311671584, 187266950892, 110121960638088, 63808586297102304, 36578013578688141504, 20797655630223547290348, 11749541312124028845092052, 6603568491137827506152966712, 3695593478842608407829235523808
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1-q^n)^(-3*A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = 2^(17/2) * Gamma(3/4)^24 / (27 * Pi^(13/2)) = 1.0344943380746471723299237298670710161068814236907171661035... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
CROSSREFS
E_6^(k/12): this sequence (k=-18), A000706 (k=-12), A289567 (k=-6), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).
Cf. A288851.
Sequence in context: A269106 A035853 A269286 * A269934 A269898 A291864
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 08 2017
STATUS
approved