login
A289559
Number of modulo n residues among sums of two fourth powers.
4
1, 2, 3, 3, 3, 6, 7, 3, 7, 6, 11, 9, 10, 14, 9, 3, 13, 14, 19, 9, 21, 22, 23, 9, 11, 20, 19, 21, 22, 18, 31, 6, 33, 26, 21, 21, 37, 38, 30, 9, 41, 42, 43, 33, 21, 46, 47, 9, 43, 22, 39, 30, 53, 38, 33, 21, 57, 44, 59, 27, 61, 62, 49, 11, 30, 66, 67
OFFSET
1,2
COMMENTS
Conjecture: the only primes p for which a(p) < p are 5, 13, 17, 29. - Robert Israel, Jul 09 2017
Conjecture is true: see Math Overflow link. - Robert Israel, Apr 01 2020
LINKS
Mathematics Overflow, Does the expression x^4+y^4 take on all values in Z/pZ (see answer by J. Silverman)
EXAMPLE
a(7) = 7 because (j^4 + k^4) mod 7, where j and k are integers, can take on all 7 values 0..6; e.g.:
(0^4 + 0^4) mod 7 = ( 0 + 0) mod 7 = 0 mod 7 = 0;
(0^4 + 1^4) mod 7 = ( 0 + 1) mod 7 = 1 mod 7 = 1;
(1^4 + 1^4) mod 7 = ( 1 + 1) mod 7 = 2 mod 7 = 2;
(1^4 + 2^4) mod 7 = ( 1 + 16) mod 7 = 17 mod 7 = 3;
(2^4 + 2^4) mod 7 = (16 + 16) mod 7 = 32 mod 7 = 4;
(1^4 + 3^4) mod 7 = ( 1 + 81) mod 7 = 82 mod 7 = 5;
(2^4 + 3^4) mod 7 = (16 + 81) mod 7 = 97 mod 7 = 6.
a(16) = 3 because (j^4 + k^4) mod 16 can take on only the three values 0, 1, and 2. (This is because j^4 mod 16 = 0 for all even j and 1 for all odd j.)
MAPLE
f1:= proc(n) option remember; local S;
S:= {seq(x^4 mod n, x=0..n-1)};
nops({seq(seq(S[i]+S[j] mod n, i=1..j), j=1..nops(S))});
end proc:
f:= proc(n) local t;
mul(f1(t[1]^t[2]), t = ifactors(n)[2])
end proc:
map(f, [$1..100]); # Robert Israel, Jul 09 2017
MATHEMATICA
f1[n_] := f1[n] = Module[{S = Table[Mod[x^4, n], {x, 0, n-1}] // Union}, Table[Mod[S[[i]] + S[[j]], n], {j, 1, Length[S]}, {i, 1, j}] // Flatten // Union // Length];
f[n_] := Module[{p, e}, Product[{p, e} = pe; f1[p^e], {pe, FactorInteger[n]}]];
Array[f, 100] (* Jean-François Alcover, Jul 30 2020, after Maple *)
PROG
(PARI) a(n) = #Set(vector(n^2, i, ((i%n)^4 + (i\n)^4) % n)); \\ Michel Marcus, Jul 08 2017
CROSSREFS
Cf. A155918 (gives number of modulo n residues among sums of two squares).
Sequence in context: A205442 A049982 A245642 * A070167 A168113 A170895
KEYWORD
nonn,mult
AUTHOR
Jon E. Schoenfield, Jul 08 2017
STATUS
approved