

A289548


The lesser of two semiprime brothers.


1



9, 14, 21, 26, 403, 12367, 41303, 66893, 68297, 73147, 111607, 116813, 118003, 130133, 146873, 222757, 260497, 418307, 429491, 439097, 478061, 559003, 628241, 729007, 822397, 1116707, 1239869, 1595683, 1887239, 2148589, 2225669, 2481463, 2502977, 2539553
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Semiprime brothers are two consecutive semiprimes (A001358) whose prime factors are consecutive primes (A000040).
The first several examples of semiprime brothers are {9, 10}, {14, 15}, {21, 22}, {26, 33} & {403, 407}.
The only square term is 9 and the only even terms are 14 and 26.
Obviously the difference between the primepi of the factors of the two consecutive semiprimes is either {1, 1} or {1, 1}.
Number of terms < 10^n: 1, 4, 5, 5, 10, 25, 62, 143, 319, 761, 2010, 5275, etc.
Only the first three terms have as the next semiprime the next integer making them twins.  Robert G. Wilson v, Jun 21 2018


LINKS

Jonathan Vos Post, Robert G. Wilson v, and Giovanni Resta, Table of n, a(n) for n = 1..5275 (terms < 10^12, terms > 10^10 from G. Resta)


EXAMPLE

26 is in the sequence because 26 = 2*13 and the next semiprime is 33 = 3*11 with 2 & 3 consecutive primes and 11 & 13 consecutive primes.
403 is in the sequence because 403 = 13*31 and the next semiprime is 407 = 11*37 with 11 & 13 and 31 & 37 being consecutive primes.


MATHEMATICA

p = q = 4; fp = fq = {1, 1}; lst = {}; While[p < 26000000, While[fq = Flatten[ Table[#1, {#2}] & @@@ FactorInteger@ q]; Length@ fq != 2, q++]; d = Sort[{fp, fq}]; If[ NextPrime[ d[[1, 1]]] == d[[2, 1]] && NextPrime[ d[[2, 2]]] == d[[1, 2]], AppendTo[lst, p]]; p = q; fp = fq; q++]; lst


PROG

(PARI) isok(p, q) = (nextprime(p+1) == q)  (nextprime(q+1) == p);
pairp(n) = if (issquare(n), vector(2, k, sqrtint(n)), (factor(n)[, 1])~);
lista(nn) = {na = 2; while (na < nn, if (bigomega(na) != 2, na++, nb = na + 1; while (bigomega(nb) != 2, nb++); fpa = pairp(na); fpb = pairp(nb); if (isok(fpa[1], fpb[1]) && isok(fpa[2], fpb[2]), print1(na, ", ")); na = nb; ); ); } \\ Michel Marcus, Jul 11 2017


CROSSREFS

Cf. A000040, A001358.
Sequence in context: A186778 A070552 A272141 * A001198 A151915 A100263
Adjacent sequences: A289545 A289546 A289547 * A289549 A289550 A289551


KEYWORD

nonn


AUTHOR

Jonathan Vos Post and Robert G. Wilson v, Jul 07 2017


STATUS

approved



