OFFSET
0,13
COMMENTS
For fixed k > 1, A(n,k) ~ 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017
LINKS
Alois P. Heinz, Antidiagonals n = 0..80, flattened
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 7, 31, 127, 511, ...
0, 1, 57, 1341, 26609, 497845, ...
0, 1, 484, 59917, 5828185, 517884748, ...
0, 1, 4199, 2665884, 1244027317, 517500496981, ...
MAPLE
b:= proc(x, y, k) option remember;
`if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
`if`(y < min(x-1, k), b(x-1, y+1, k), 0))
end:
A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[y<Min[x - 1, k], b[x - 1, y + 1, k], 0]]; A[n_, k_]:=A[n, k]=If[n==0, 1, b[2n*k, 0, n] - b[2n*k, 0, n - 1]]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}]//Flatten (* Indranil Ghosh, Jul 07 2017, after Maple code *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 06 2017
STATUS
approved